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Abstract Grain yield (GY) and grain protein concen-

tration (GPC) are two major traits contributing to the

economic value of the wheat crop. These are, conse-

quently, major targets in wheat breeding programs, but

their simultaneous improvement is hampered by the

negative correlation between GPC and GY. Identifying

the genetic determinants of GPC and GY through

quantitative trait loci (QTL) analysis would be one way

to identify chromosomal regions, allowing improve-

ment of GPC without reducing GY using marker-

assisted selection. Therefore, QTL detection was carried

out for GY and GPC using three inter-connected

doubled haploid populations grown in a large multi-

environment trial network. Chromosomes 2A, 2D, 3B,

7B and 7D showed co-location of QTL for GPC and GY

with antagonistic effects, thus contributing to the

negative GPC–GY relationship. Nonetheless, genomic

regions determining GPC independently of GY across

experiments were found on chromosomes 3A and 5D

and could help breeders to move the GPC–GY

relationship in a desirable direction.

Keywords Grain protein concentration �
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Abbreviations

GPC Grain protein concentration

GY Grain yield

QTL Quantitative trait loci

Introduction

Grain yield (GY) and grain protein concentration (GPC)

are major traits in wheat as they largely determine wheat

productivity and quality (e.g. Shewry 2009; Oury et al.

2010). However, due to the negative genetic relationship
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between GY and GPC, breeding has resulted in

increasing GY at the expense of GPC with potential

impacts on quality in bread-making wheats (Oury et al.

2003). This negative relationship might be related to the

presence of genes having pleiotropic effects on both GY

and GPC through a dilution effect (Pepe et al. 1975;

Miezan et al. 1977; McNeal and Berg 1978), such as

genes affecting the duration of leaf senescence after

flowering (Bogard et al. 2011). However, it has been

suggested that, depending on the environment, increas-

ing N remobilization efficiency or post-anthesis N

uptake would allow increases in GPC without decreas-

ing GY (Slafer et al. 1990, Bogard et al. 2010). This

suggests the presence of genes having independent

effects on GY and GPC.

Marker-assisted selection (MAS) has been proposed

as an efficient tool to complement conventional

breeding programs and has already been used to

improve wheat quality and resistance to biotic stress in

several parts of the world (Gupta et al. 1999; Dubcovsky

2004). In particular, MAS has been successfully used

in wheat to increase GPC through the introgression of

the GPC-B1 quantitative trait locus (QTL) for high

grain protein content (Chee et al. 2001; Uauy et al.

2006; Sherman et al. 2008). This QTL was initially

mapped on the short arm of chromosome 6B in a

population of recombinant inbred lines involving a

Triticum turgidum ssp dicoccoides chromosome sub-

stitution line. Fine mapping resulted in identifying a

NAC transcription factor (NAM-B1) that regulates

senescence (Uauy et al. 2006). This gene was shown to

have pleiotropic effects, and RNAi transgenic lines

with reduced expression levels senesced later and

exhibited a decrease in GPC, Zn and Fe content.

MAS technology is based upon the identification,

through marker–trait association studies (QTL analy-

sis, association genetics), of genetic markers linked to

genomic regions determining the trait of interest.

Genetic markers usable in MAS should have some

desirable features. In particular, such markers should

be closely linked to genes of interest to avoid

introgression of undesirable characteristics and should

be identified on adapted germplasm to be of practical

value in breeding of elite material. Moreover, as MAS

might be an expensive technology despite the recent

deployment of high-throughput molecular marker

technology in wheat [e.g. SNP (Oliphant et al. 2002;

Akhunov et al. 2009), DArT� (Akbari et al. 2006)

platforms], highly polymorphic markers linked to

stable QTL (i.e. identified across different experimen-

tal conditions) should be preferably selected in order

to maximize the benefits of using MAS.

So far, most of the marker–trait association studies

carried out by QTL analysis have been based on the use

of bi-parental populations, leading to the exploitation

of limited genetic diversity to identify loci possibly

useful in MAS. The use of association genetics on

varietal sets representing the existing genetic variabil-

ity of the crop (Balfourier et al. 2007; Bordes et al.

2010), connected populations, ‘‘multiparent advanced

generation intercross’’ (Varshney and Dubey 2009)

and QTL meta-analysis (Goffinet and Gerber 2000)

might partially avoid this drawback and help to

validate QTL identified using bi-parental populations.

Indeed, the use of several populations derived from

diverse parental material not only increases the prob-

ability that a QTL will be significant in at least one

population, but also provides insight into the available

genetic variability that might be used in breeding and a

better understanding of the genetic architecture of the

phenotype (Verhoeven et al. 2005; Holland 2007). The

use of inter-related populations is a powerful approach

to mapping QTL and this strategy has been applied in

several plant and animal species (Rebaı̈ et al. 1997;

Jourjon et al. 2000; Blanc et al. 2006; Pierre et al. 2008;

Billotte et al. 2010) but not yet in wheat.

Different strategies may be applied to benefit from

the use of multi-population material. A popular

approach is based on QTL meta-analysis (Goffinet

and Gerber 2000) where QTL are detected in each

population independently and then combined together.

This approach has already been used in different

studies on wheat; in particular on earliness (Hanocq

et al. 2007; Griffiths et al. 2009) and grain size (Gegas

et al. 2010). Another strategy uses specific statistical

methods to carry out QTL detection on the combined

multiparental data. This can be achieved using the

MCQTL software (Jourjon et al. 2005) which enables

linear regression in multi-cross designs. This approach

has already been successfully used in Medicago

truncatula (Pierre et al. 2008) and Elaeis guineensis

(Billotte et al. 2010). Numerous QTL studies have

used bi-parental populations in wheat for genetic

analysis of GY or GPC separately (Perretant et al.

2000, Prasad et al. 2003, Marza et al. 2006, Kuchel

et al. 2007, Wang et al. 2009, Sun et al. 2010), but only

a few have addressed the two traits simultaneously

(Blanco et al. 2002, 2006, 2012; Charmet et al. 2005;
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Laperche et al. 2007; Pushpendra et al. 2007), and

none used inter-related populations.

The objectives of the present study were to: (1)

identify QTL determining GY and GPC using inter-

related populations and (2) suggest genomic regions

flanked by molecular markers that could be used in

molecular-assisted breeding to improve GPC without

reducing GY.

Materials and methods

Plant material and field experiments

Plant material used in this study consisted of three

doubled-haploid mapping populations from the crosses

Toisondor 9 Quebon (TORQUE), CF9107 9 Que-

bon (CFQUE) and Toisondor 9 CF9107 (TOR107).

The parents have been shown to contrast for several

traits related to N uptake, post-anthesis N remobiliza-

tion and leaf senescence kinetics (Gaju et al. 2011).

These three populations were grown in a multi-

environment trial network comprising one location in

France (Clermont-Ferrand; 45�460N, 03�090E) and two

in the UK (Sutton Bonington; 52�500N, 1�140W, and

Norwich; 52�380N, 1�180E), over two seasons in

Clermont-Ferrand (2007/8, 2008/9; hereafter referred

to as 2008 and 2009, respectively) and one season

(2009) for the other locations, and two N treatments

(LN, low N; HN, high N), resulting in seven loca-

tion 9 year 9 N treatment combinations referred

hereafter as different environments (Table 1). The

field experiment carried out at Clermont-Ferrand in

2008 under high N input (abbreviated as cf.8.HN) was

a first evaluation of the plant material, so the number of

genotypes grown for each population was higher than

in the other environments: 316 doubled haploid lines

(DHL) for the CFQUE population, 230 for TORQUE

and 143 for TOR107. In the other environments, 80

DHL were grown for the CFQUE and TORQUE

populations while 140 DHL were grown for TOR107.

These DHL were chosen at random after eliminating

those which were heavily lodged or which showed low

seed purity based on the experiment of the previous

year. More lines were chosen in the TOR107 popula-

tion as a related study on the relationship between grain

protein concentration, grain yield and leaf senescence

during grain filling was carried out using this popula-

tion (Bogard et al. 2011).

Two N fertiliser treatments were applied at each site

in 2008–2009: a high N treatment (HN) intended to

replicate local commercial practice, and a low N

treatment (LN) with an N supply corresponding to

25 % of that applied in the high N treatment (Table 1).

In each location, 50–60 kg N ha-1 were applied around

the end of tillering (Zadoks’ stage GS25; Zadoks et al.

1974) for both N treatments. For the HN treatment,

60–190 kg N ha-1 were applied in two equal split

applications during stem elongation (between GS31 and

GS32), and between flag leaf tip appearance (GS37) and

male meiosis (GS39). Each split was applied on the

same calendar date for all genotypes as granules of

ammonium nitrate (34.5 % N). Mineral soil N at the end

of winter and total N fertilizer applied in each exper-

iment are shown in Table 1.

For each population, field experiments were

arranged in an incomplete block design with two

blocks each representing an N treatment. The blocks

were each divided into eight sub-blocks with four sub-

blocks allocated to TOR107 and two to each of the

TORQUE and CFQUE populations. Lines were ran-

domly arranged within each sub-block which com-

prised 50 plots with Toisondor, CF9107 and Quebon as

controls. For each population, a subset of DHL was

duplicated and was represented in two different sub-

blocks. Each sub-block contained a subset of 23 DHL

among the ones appearing once, and 24 DHL among

the ones appearing twice. Plot sizes were 24 rows 9

1.65 m at Sutton Bonnington, 6 rows 9 1.50 m at

Clermont-Ferrand and 6 rows 9 1.20 m at Norwich.

Across experiments, different seed rates were used

sufficient to establish a target of 200 plants m-2 after

winter. When necessary, fungicides, insecticides and

herbicides were applied to achieve optimal manage-

ment of the crop. Plant growth regulator (chlormequat)

was applied at onset of stem elongation in all the

locations except in Clermont-Ferrand.

Phenotyping

All plots of the trials were harvested with a combine

harvester to measure grain yield (GY, g m-2). Near-

infra-red spectrometry (FOSS NIRS 6500, Höganäs,

Sweden) was used to assess grain protein concentra-

tion (GPC, %) in whole grains. All values were

adjusted to 0 % moisture content. Genotype means for

GY and GPC across HN and LN treatments, or across

all the environments, were calculated for each
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population, and were analysed as separate environ-

ments named, hereafter, as ‘‘HN’’, ‘‘LN’’ or ‘‘mean’’.

Genotyping

One hundred and forty DHL from the TOR107, 91

from the TORQUE and 90 from the CFQUE

populations were genotyped. Genomic DNA was

extracted from leaves frozen and ground in liquid N

using the Qiagen Biosprint plant DNA kit (Qiagen,

USA). DNA concentration was then adjusted to

100 ng lL-1 using a microlab Star robot (Hamilton,

USA). DArT� typing was obtained from the Diver-

sity Arrays Technology Pty Ltd. Company (http://

www.triticarte.com.au) by sending 30 lL of DNA

solution. Genomic DNA of the parents and DHL

were hybridised to the wheat DArT array v2.3 and

polymorphisms were detected and scored as descri-

bed by Akbari et al. (2006).

SSR markers were chosen in order to complete the

DArT� typing of the D genome in particular. SSR

genotyping was done using a standard protocol

described in Bogard et al. (2011). The photoperiod

sensitivity gene Ppd-D1 was typed according to

Beales et al. (2007). The vernalization requirement

gene Vrn-D3 was typed using specific primers based

on Bonnin et al. (2008). A set of 384 single nucleotide

polymorphism (SNP) loci discovered on a panel of 16

hexaploid wheat lines was genotyped on the TOR107

population using the Illumina Golden Gate technol-

ogy (Akhunov et al. 2009) as previously described

(Oliphant et al. 2002). Genotyping reactions were

carried out using 150 ng of genomic DNA according

to the manufacturer’s instructions.

Genetic mapping

The genetic map used in this study was obtained by

typing 741 markers comprising 642 DArT, 58 simple

sequence repeat (SSR) and 39 SNP markers and

specific markers for the Ppd-D1 and the Vrn-D3 genes.

The map was generated using the Carthagene v1.0

software (de Givry et al. 2005) using the Haldane

mapping function. A matrix of genotype scores was

created for each population and these were merged

using the ‘‘merge’’ command in Carthagene. First,

linkage groups (LG) were defined using the ‘‘group’’

command with LOD C 3 and genetic distance

B 30 cM. Marker order was then defined by flipping

markers and choosing the best order. Although DArT

markers are highly clustered (Francki et al. 2009) and

markers inside a cluster do not bring any additional

information for QTL analysis, all DArT� markers were

kept in order to facilitate subsequent comparative

studies across populations by meta-analysis. When two

LG corresponded to the same chromosome, a number

was added at the end of the chromosome name (e.g.

2A1, 2A2).

Table 1 Characteristics of the environments studied: name of the locations, coordinates (a.s.l, ‘‘above sea level’’), plot size, harvest

year

Location Coordinates Plot

size (m)

Harvest

year

Cumulative

rainfall

(mm)

Daily air

temperature

(�C)

Ndays25 Mineral

soil N

(kg N ha-1)

N fertilizer

(kg N ha-1)

Environment

abbreviation

Clermont-Ferrand (F) 45�780 N

3�080 E

401 m a.s.l

1.5 9 5 2008

2009

183

151

18

19

28

28

115

75

180

50

200

cf.8.HN

cf.9.LN

cf.9.HN

Norwich (UK) 52�630 N

1�300 E

14 m a.s.l

1.5 9 4 2009 195 15 1 35 50

200

nw.9.LN

nw.9.HN

Sutton Bonington (UK) 52�820 N

1�250 W

38 m a.s.l

1.65 9 5 2009 157 16 5 23 60

240

sb.9.LN

sb.9.HN

Cumulative rainfall, average daily air temperature and number of days with maximum daily air temperature above 25 �C (Ndays25) were calculated

between 1 June and 1 August of the harvest year, roughly corresponding to the period between anthesis and physiological maturity. Soil N at the end of

winter (from 0 to 90 cm depth), total N fertilizer supplied during the experiments and environment abbreviations are given. N fertilizer was applied

using split applications (see ‘‘Materials and methods’’)
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QTL mapping using the MCQTL software

QTL analysis was carried out using the MCQTL v5.2

software whose architecture and statistical implemen-

tation are reported in Jourjon et al. (2005). The

iterative QTL mapping procedure implemented in

MCQTL (iQTLm) gives an exclusive window of

20 cM around the putative QTL and a forward

stepwise method to select genetic cofactors from the

whole genome to automatically find a multiple QTL

model. A genome-wide significance threshold was

obtained for each trait 9 environment combination

using 1,000 permutations. The threshold of inclusion

of genetic cofactors was set to 0.95 9 genome-wide

significance threshold (B. Mangin, personnal commu-

nication). The confidence interval for the QTL

position corresponded to the genetic map segment

included after a LOD drop-off of one unit. The

contribution of an individual QTL detected in a given

environment to trait phenotypic variance was esti-

mated by the R2 coefficient. A full model R2 taking

into account all the QTL detected for a given

trait 9 environment combination was obtained to

estimate the proportion of total genetic effects of the

phenotypic variance. The sum of any QTL allelic

effects was null by constraint of the model.

Analysis of QTL colocation

Analysis of QTL co-location over environments was

carried out using the MetaQTL software (Veyrieras

et al. 2007). This software allows QTL meta-analysis

to be performed based on the theory developed by

Goffinet and Gerber (2000), who showed that it is

robust enough to handle data collected on non-

independent experiments (i.e. obtained on a unique

mapping population grown in different environments),

although the resulting confidence intervals of the

meta-QTL might be biased. MetaQTL allows the

choice of the best of k models (k = 1, …, n) describing

the number of QTL clusters on a given LG. This

allowed the identification of potentially stable (i.e.

identified across different environments) or pleiotro-

pic QTL having an effect on both GPC and GY. Meta-

QTL analysis was carried out for each LG carrying at

least 10 QTL whatever the traits or the environments

where these QTL were detected. Graphical represen-

tations of the clustering were obtained with the

MetaQTL software.

Statistical analysis

Analysis of variance was performed using Rv2.11.1

(R Development Core Team 2005) to test for genetic,

environment (nitrogen in particular) and cross effect

(genetic background) using the following model:

Xijkl ¼ lþ Ck þ SiteYearj þ Nl þ GiðCkÞ þ eijk

where, Xijkl is the value for a given trait of the ith

genotype in the jth site 9 year for the lth nitrogen

treatment for cross k; l is the general mean, Ck is the

effect of cross k, SiteYearj is the effect of site 9 year j;

Nl is the effect of nitrogen treatment l, Gi (Ck) is the

effect of line i in cross k and eijk is the residual

variance.

Results

Phenotypic variation

Large phenotypic variation was observed for GY and

GPC ranging from 248 to 1,266 g m-2 and

5.4–17.3 % across the whole dataset, respectively

(Table 2). This range of variation includes genetic,

environment and genotype 9 environment interaction

effects and may be attributed to the diversity of

climatic conditions, genotypes and N supply repre-

sented in the trial network (Table 1). Analysis of

variance showed that site 9 year, nitrogen and genetic

background effects were significant for GPC and GY

(data not shown). A significant negative GPC–GY

relationship was observed in 17 out of the 21

population 9 environment combinations with large

variability for correlation coefficients (r) and slopes

(r ranging from -0.64 to ?0.11, and slopes ranging

from -0.009 to ?0.001 % g-1 m2; Table S1).

Genetic map

A set of 741 polymorphic markers were typed across

the three mapping populations; 473 polymorphic

markers were typed on the TORQUE population,

496 on the TOR107 and 360 on the CFQUE popula-

tion. Thirty-seven markers were polymorphic in each

population, of which seven were DArT� and 30 were

SSR, suggesting that three different alleles are present

for these markers. Two hundred and forty-two poly-

morphic markers were common between the TOR107
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and TORQUE populations (including the Ppd-D1

gene), 139 were common between TORQUE and

CFQUE, and 133 were common between TOR107 and

CFQUE (including the Vrn-D3 gene). The genetic

map contained 695 markers (46 markers were dis-

carded as they could not be linked). The total length

was 2,510 cM with 34 LG representing the 21 wheat

chromosomes and an average length of 74 cM per LG.

Of the 695 markers, 269 DArTs were co-segregating

in different clusters across the map, leaving 426

informative markers. The average interval between

consecutive markers was 6.4 cM after removing

clustered DArT markers (i.e. non-segregating markers

mapped at the same location that do not bring any

additional information for QTL detection). The ho-

moeologous group 4 chromosomes appeared to be

under-represented with only 34 markers compared to

the 110 markers mapped on average to other

Table 2 Descriptive statistics of grain yield and grain protein concentration for the three mapping populations (CFQUE, TOR107,

TORQUE) used in this study

Environment Population Grain yield (g m-2) Grain protein concentration (%)

CF QUE TOI Mean (range) CF QUE TOI Mean (range)

cf.8.HN CFQUE 868 938 946 842 (604; 1,007) 13.7 13.7 12.6 13.9 (11.9; 17.3)

TOR107 879 (624; 1,140) 12.4 (10.4; 15.7)

TORQUE 927 (583; 1,176) 12.7 (9.8; 16.8)

cf.9.HN CFQUE 620 705 544 641 (384; 748) 10.2 10.3 9.1 10.3 (8.8; 11.9)

TOR107 631 (444; 765) 10.1 (8.9; 11.6)

TORQUE 702 (548; 836) 10.5 (8.7; 12)

cf.9.LN CFQUE 481 568 432 543 (423; 651) 7.6 8.0 7.1 7.8 (6.8; 9)

TOR107 543 (356; 660) 7.7 (6.2; 9.3)

TORQUE 590 (451; 663) 7.9 (6.8; 9.4)

nw.9.HN CFQUE 812 965 800 866 (730; 1,031) 14.2 14.3 12.0 13.9 (11.8; 16.5)

TOR107 884 (484; 1,154) 12.2 (9.3; 15.2)

TORQUE 855 (688; 1,016) 12.8 (10.4; 16.2)

nw.9.LN CFQUE 592 693 630 634 (518; 751) 9.4 9.6 8.1 9 (7; 11.1)

TOR107 655 (445; 951) 7.9 (5.4; 11.2)

TORQUE 643 (463; 809) 8.6 (6.9; 11.2)

sb.9.HN CFQUE 908 970 761 847 (543; 1,266) 13.5 13.0 12.6 12.9 (11.3; 14.8)

TOR107 858 (275; 1,152) 12.4 (10; 15.2)

TORQUE 873 (611; 1,129) 12.6 (10.9; 14.5)

sb.9.LN CFQUE 508 544 598 538 (316; 804) 8.7 9.1 8.6 8.6 (7.5; 10.7)

TOR107 492 (248; 688) 8.4 (6.9; 9.8)

TORQUE 594 (308; 894) 8.8 (7.6; 10.1)

LN CFQUE 527 602 523 573 (472; 674) 8.5 8.9 7.9 8.5 (7.6; 9.8)

TOR107 564 (451; 708) 8.0 (6.5; 9.4)

TORQUE 610 (474; 742) 8.4 (7.2; 10.0)

HN CFQUE 802 895 762 802 (702; 905) 12.9 12.8 11.6 12.7 (11.4; 14.3)

TOR107 814 (597; 922) 11.7 (10.0; 13.7)

TORQUE 840 (681; 950) 12.2 (10.4; 14.1)

Mean CFQUE 684 769 673 704 (607; 784) 11.0 11.2 10.0 10.9 (9.7; 12.2)

TOR107 707 (557; 827) 10.1 (8.5; 11.6)

TORQUE 741 (610; 836) 10.6 (9.2; 12.3)

Mean values for the three parents of the populations are presented (CF9107, CF; QUEBON, QUE; TOISONDOR, TOI). Means and

ranges (in brackets) for each population 9 environment combination are given. Environment abbreviations are given in Table 1
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homoeologous groups. The D genome was the least

represented with only 87 markers compared to the 279

markers on the A genome and the 329 markers on the

B genome.

QTL detection for GY and GPC

Eighty-nine QTL were detected in this study. Two to

seven QTL were found for GY in each environment,

leading to a total of 36 QTL (Table 3). Depending on

the environment, one to ten QTL were found for GPC,

leading to a total of 53 QTL for this trait (Table 3). The

total percentage of variance explained, taking into

account all the QTL detected in one environment,

ranged from 13 to 52 % for GY and from 10 to 59 %

for GPC. The percentage of variance explained by

each individual QTL ranged from 6 to 32 % for GY

and from 6 to 25 % for GPC. As shown in Table 3,

some LG carried only QTL for GY such as 1B (two

environments), 2B2 (one environment), and 7A (one

environment). Some others carried only GPC QTL

such as 5A1 (one environment) and 5D1 (6 environ-

ments). The other LG showed QTL for both GY and

GPC although some environments showed only GPC

QTL or GY QTL (Table 3).

Meta-analysis of QTL co-locations

Meta-QTL analysis was carried out for each LG

carrying at least ten QTL whatever the environment

where these QTL were detected. This led to the

identification of meta-QTL on seven LG.

LG 2A2 carried QTL detected in three environ-

ments for GY and in all environments for GPC (Figure

S1, Table 4). The most probable meta-analysis model

was one unique QTL cluster (‘‘MQTL2A2’’) with a

confidence interval of 0.09 cM (Table 4). Co-location

of QTL for GY and GPC were found on this LG for

cf.8.HN, mean values across the low N and mean

values across all the environments showed co-location

of QTL for GY and GPC (Figure S1). The CF9107 and

the Quebon alleles had positive effects on GPC

(ranging from 0.01 to 0.20 points of GPC) and

negative effects on GY (ranging from -0.4 to

-19.7 g m-2), while the Toisondor allele had nega-

tive effects on GPC (ranging from -0.12 to -0.32

points of GPC) and positive effects on GY (ranging

from 8.9 to 15.3 g m-2).T
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LG 2D carried QTL detected in seven environments

for GY and in four environments for GPC (Figure S1,

Table 4). Meta-analysis identified two QTL clusters,

with one being predominant (‘‘MQTL2D_2’’) as it

carried ten out of 11 of the QTL detected on this LG

(Figure S1, Table 4). The two clusters flank the Ppd-D1

gene (Figure S1). Environment cf.8.HN, mean values

across the low N treatment, mean values across the high

N treatment and mean values across all the environ-

ments showed co-location of QTL for GY and GPC in

this genomic region (Figure S1). The CF9107 and the

Quebon alleles had negative effects on GPC (ranging

from -0.02 to -0.27 points of GPC) and positive effects

on GY (ranging from 2.4 to 12.5 g m-2) while the

Toisondor allele had positive effects on GPC (ranging

from 0.09 to 0.24 points of GPC) and negative ones on

GY (ranging from -8.6 to -24.8 g m-2).

LG 3A carried QTL detected in six environments

for GPC and in three environments for GY (Figure S1,

Table 4). Meta-analysis identified four QTL clusters,

one cluster including only one QTL for GY, another

one including two QTL for GPC, one major cluster

including four GPC QTL (‘‘MQTL3A_3’’) and the last

one including two QTL for GY (Figure S1, Table 4).

The CF9107 allele had positive effects on GPC

(ranging from 0.03 to 0.17 points of GPC) while the

effect of the Toisondor allele was negative (ranging

from -0.26 to -0.09 points of GPC).

LG 3B2 carried QTL detected in six environments

for GPC and in three environments for GY (Figure S1,

Table 4). QTL meta-analysis allowed the identification

of one major QTL cluster (‘‘MQTL3B_1’’) including

seven QTL for GY and GPC (Figure S1, Table 4). This

genomic region showed co-location of QTL with

antagonistic effects on GY and GPC in cf.9.LN, using

mean values across the LN treatment or across

the whole dataset, thus potentially contributing to the

GPC–GY negative relationship. The CF9107 and the

Quebon alleles had negative effects (ranging from

-0.14 to -0.04 points of GPC) and the Toisondor allele

had positive effects (ranging from 0.10 to 0.28 points of

GPC). Regarding GY, the Quebon allele had positive

effects (ranging from 10.1 to 12.1 g m-2), the Toison-

dor allele negative effects (ranging from -9.7 to

-9.2 g m-2) and the CF9107 allele was intermediate

(ranging from -2.4 to -0.4 g m-2).

LG 5D1 carried only GPC QTL detected in five

environments, predominantly under high N (cf.8.HN,

mean, nw.9.HN, sb.9.HN, HN; Figure S1, Table 4). The

LOD score ranged from 4 to 7 and the percentage of

Table 4 QTL clustering on linkage groups 2A2, 2D, 3A, 3B2, 5D1, 7B and 7D

Linkage group Meta-QTL Position CI (cM) QTL GPC QTL GY QTL GPC & GY Flanking markers

2A2 MQTL2A2 30.91 0.09 10 3 3 wPt-4197; wPt-5245

2D MQTL2D_1 67.28 8.8 0 1 0 FdGogat_2D; Ppd-D1

MQTL2D_2 78.37 2.92 4 6 4 Ppd-D1; gpw332

3A MQTL3A_1 53.9 19.34 0 1 0 wPt-5125; gpw5016

MQTL3A_2 84.55 18.58 2 0 0 gpw5016; wPt-6357

MQTL3A_3 120.97 10.05 4 0 0 wPt-6357; gwm666

MQTL3A_4 163.79 50.37 0 2 0 K04_3A; wPt-7890

3B2 MQTL3B_1 41.96 6.27 5 2 1 G16_3D; wPt-4364

MQTL3B_2 75.95 43.64 1 1 0 wPt-4364; wPt-0773

5D1 MQTL5D_1 23.5 43.6 1 0 0 wPt-8030; gwm174

MQTL5D_2 96.31 1.01 5 0 0 wPt-0886; wPt-1999

7B MQTL7B_1 52.39 8.06 5 2 1 wPt-7934; wPt-1826

MQTL7B_2 127.9 4.02 0 1 0 wPt-8921; wPt-8040

MQTL7B_3 147.7 6.29 1 3 1 wPt-7720; wPt-0408

7D MQTL7D 71.87 1.06 8 6 6 Vrn-D3; wPt-3727

QTL detection was carried out for grain yield (GY) and grain protein concentration (GPC) on three related wheat populations grown

in a large multi-environment trial network using the MCQTL software for each trait 9 environment combination. QTL were

clustered into meta-QTL (MQTL) using the MetaQTL v1.0 software (Veyrieras et al. 2007). For each linkage group, the name of the

meta-QTL, its position, the length of its confidence interval (CI, a\ 0.05), the number of environments where QTL were found for

GPC, GY and both GY and GPC and markers flanking the confidence interval of the meta-QTL are displayed
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variance explained by this QTL from 0.06 to 0.11

correspond to values of the determination coefficient

(R2). In percentage, this is 6 to 11 % depending on the

environment (data not shown). Additionally, a QTL

analysis carried out only on the Quebon 9 Toisondor

population confirmed the presence of this QTL between

markers Xgpw5174 and XwPt-1999 (data not shown).

Thus, this region potentially affects GPC but not GY

under high N. Meta-analysis clearly indicated the

presence of a unique QTL cluster (‘‘MQTL5D_2’’)

with a confidence interval of 1 cM (Figure S1, Table 4).

The Quebon allele had a positive effect on GPC (ranging

from 0.1 to 0.2 points of GPC), the Toisondor allele had

a negative effect (ranging from -0.15 to -0.09 points of

GPC), and the CF9107 allele was intermediate.

LG 7B carried QTL detected in six environments

for GY and GPC (Figure S1, Table 4). Meta-analysis

identified two main clusters; a third one contained only

one QTL for GY. The first cluster (‘‘MQTL7B_1’’)

contained QTL detected in four environments for GPC

only, QTL detected in environment cf.9.HN for GY

only, and QTL detected using mean values for the low

N treatment for both GPC and GY (Figure S1,

Table 4). The Toisondor allele had a positive effect

on GPC (ranging from 0.1 to 0.21 points of GPC) but a

negative effect on GY (ranging from -13.1 to

-2.2 g m-2). The CF9107 and the Quebon alleles

had negative effects on GPC (ranging from 0 to -0.11

points of GPC). Regarding GY, the Quebon allele

always had positive effects (ranging from 8.9 to

12.5 g m-2) while the CF9107 allele had a positive

effect in cf.9.HN (?4.2 g m-2) and a negative effect

in the LN environment (-10.2 g m-2).

The second QTL cluster on LG 7B (‘‘MQTL7B_3’’)

contained QTL detected for GY in three environments,

and in one environment for GPC (Figure S1, Table 4).

Concerning GY, the CF9107 allele had a negative effect

(ranging from -8.6 to -18.1 g m-2), the Toisondor

allele had a positive effect (ranging from 6 to 9.3 g m-2)

and the Quebon allele was intermediate. Regarding the

GPC QTL contained in this cluster, the Toisondor allele

had a negative effect (-0.21 points of GPC), while the

CF9107 and the Quebon alleles had positive effects

(0.13 and 0.08 points of GPC, respectively).

LG 7D carried QTL detected in six and eight

environments for GY and GPC, respectively (Figure

S1, Table 4). Meta-analysis allowed the identification

of a unique cluster (‘‘MQTL7D’’) containing all the

QTL detected for this LG. The 1.1 cM confidence

interval of this meta-QTL includes the Vrn-D3 vernal-

ization gene (Figure S1, Table 4). QTL were detected

in this region in six environments and the antagonistic

effects of all three alleles on GY and GPC were high.

This indicates that this region is probably contributing

the most to the GPC–GY negative relationship in this

study. The Toisondor and the Quebon alleles had a

positive effect on GY (ranging from 6.9 to 13.9 g m-2)

and a negative effect on GPC (ranging from -0.26 to

-0.01 points of GPC), while the CF9107 allele had a

negative effect on GY (ranging from -26.2 to

-14.8 g m-2) and a positive effect on GPC (ranging

from 0.12 to 0.28 points of GPC).

Discussion

QTL analysis for GY and GPC was carried out on

three inter-related wheat populations grown in a large

multi-environment trial network, using the MCQTL

software (Jourjon et al. 2005). Eighty-nine QTL were

detected over all trait 9 environment combinations.

QTL meta-analysis allowed the identification of

genomic regions having antagonistic effects on GY

and GPC (LG 2A2, 2D, 3B2, 7B and 7D), thus

contributing to the negative GPC–GY relationship,

and genomic regions determining GPC independently

of GY (LG 3A, 5D1) that may be useful in MAS for

improving GPC without decreasing GY.

Genomic regions contributing to the GPC–GY

relationship: candidate genes and ecophysiological

properties

Meta-analysis showed co-location of QTL with antag-

onistic effects on GPC and GY on chromosomes 2A,

2D, 3B, 7B and 7D, although the resolution of this QTL

analysis does not allow distinguishing between true

pleiotropic effect and tight linkage. QTL clusters on 7D

and 2D had the most frequently antagonistic effects on

GY and GPC (in six and four environments, respec-

tively). These clusters were close to mapped genes

known to be involved in the regulation of flowering time

[Ppd-D1 on 2D (Beales et al. 2007) and Vrn-D3 on 7D

(Yan et al. 2006)]. Regarding chromosome 2A, QTL for

grain protein content (Groos et al. 2003; Prasad et al.

2003; Laperche et al. 2007) and dough quality param-

eters (Kerfal et al. 2010) have already been reported on

this chromosome. A chloroplastic glutamine synthetase
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gene (GS2), an enzyme associated with primary nitro-

gen assimilation, has been recently mapped on the

homoeologous group 2 chromosomes between markers

Xgwm294 and Xwmc181 (Li et al. 2011). Moreover,

these authors reported a significant association with a

polymorphism in the gene and different agronomic traits

including GPC. According to the consensus map

integrating DArT and SSR markers from Crossa et al.

(2007), one of the markers (XwPt-2087) in the vicinity

of this QTL is closely linked to Xgwm294 and Xwmc181

(1.3 and 2.7 cM away from these markers, respectively)

near to the GS2 map location.

Genomic regions on 2A, 2D and 7D have been shown

to affect leaf senescence duration in the TOR107

population (Bogard et al. 2011). Leaf senescence

duration during the grain-filling period is a possible

candidate trait to explain the GPC–GY negative corre-

lation. In wheat, grain nitrogen mostly comes from N

taken up during the vegetative period and remobilised to

the grain after anthesis (Sanford and MacKown 1986;

Barbottin et al. 2005; Kichey et al. 2007), while C

assimilated after flowering is the main source of C for

starch synthesis in the grain (Triboi et al. 2006).

Therefore, the duration of leaf activity during the post-

anthesis period largely affects the capacity for C

assimilation but also for N remobilisation efficiency.

Later leaf senescence promotes C assimilation and

generally is associated with low N remobilisation

efficiency, the inverse being generally true for early

senescent genotypes (Gregersen et al. 2008). Moreover,

QTL for leaf senescence duration after flowering found

on chromosomes 2D and 7D were associated with

flowering time QTL related to the Ppd-D1 (Beales et al.

2007) and Vrn-D3 genes (Yan et al. 2006). The impact

of flowering time on leaf senescence duration may be

related to modifications of the partitioning of the N

uptake between the pre- and post-anthesis period, of the

source:sink ratio, or of the perceived environment

resulting in reduced post-anthesis C assimilation of late

genotypes (Bogard et al. 2011).

Genomic regions determining GPC independently

of GY possibly useful in MAS

Two chromosomes showed co-location of QTL for

GPC detected in different environments but no QTL

for GY, suggesting these regions affect GPC consti-

tutively and independently of GY, and might be useful

in MAS to shift the GPC–GY relationship.

The region on chromosome 3A is located at

119 cM, presumably on the long arm (Sourdille

et al. 2004), with a confidence interval of 10 cM.

The closest genetic marker is Xgwm666, 7 cM away

from the most probable position of the QTL. This

region has already been identified as influencing GPC,

dough strength (Groos et al. 2003; Groos et al. 2004;

Reif et al. 2010), low molecular weight glutenin, total

gliadin content (Charmet et al. 2005), flour protein

content (Zhao et al. 2010) and bread-making quality

(Groos et al. 2007). The relatively large confidence

interval of the QTL limits its usefulness in MAS.

Further fine mapping is needed to reduce the uncer-

tainty about the location and develop genetic markers

closer to the QTL.

Associations between markers on chromosome 5D

and variation for GPC (Reif et al. 2010), dough

strength and dough tenacity (Kerfal et al. 2010) have

been already reported. The region on chromosome 5D

determining GPC independently of GY in the present

study is located at 96 cM. The closest SSR marker

(Xgwm639), 20 cM away from this meta-QTL, was

also mapped using Chinese Spring deletion lines by

Sourdille et al. (2004), and is located on the long arm

of chromosome 5D. This marker was located at the

same distance from a QTL for GS activity found on

another mapping population under high N (Fontaine

et al. 2009). This meta-QTL shows a confidence

interval of 1 cM but the use of non-independent data in

QTL meta-analysis may have biased the calculation of

the meta-QTL confidence interval, so this should be

considered with caution. The closest marker to the

meta-QTL was DArT XwPt-1999 mapped at 96.9 cM.

This marker might be useful for diagnostics in MAS

programs to improve GPC in wheat, if converted to a

more suitable marker type. Unfortunately, the

sequence of this marker was not available from the

Triticarte company (http://www.diversityarrays.

com/sequences.html). Alternatively, the closest SSR

marker to this QTL (Xgpw5174) may be used, though

6 cM away from the most likely position of this QTL.

Finally, some chromosomes containing co-located

QTL for GPC and GY had an effect only on one of

these two traits in some environments. For instance,

the major QTL cluster for GPC found on 2A affected

both GY and GPC in three environments, while it

solely affected GPC in seven environments. It prob-

ably contributes moderately to the negative GPC-GY

relationship, and might be useful for improving GPC.
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Further environment characterization is needed to

determine in which type of environment these regions

might be useful for improving GY or GPC

independently.

Benefits of using connected populations in QTL

detection for GY and GPC in wheat

The main advantage of using inter-related populations

in QTL detection is the increased chance of having

polymorphic QTL and increasing the number of

genotypes per allelic class, thus increasing the statis-

tical power of QTL detection and estimation of allelic

effects (Rebaı̈ and Goffinet 1993; Muranty 1996). As a

consequence, QTL may be finely mapped, showing a

reduced confidence interval compared to single cross

studies (Pierre et al. 2008). In comparison with the

results of a companion study carried out on

the TOR107 population only (Bogard et al. 2011),

the number of QTL identified for GPC and GY was

increased from 31 in Bogard et al. (2011) to 89 in the

present study, presumably due to the increased number

of polymorphic loci and possibly to the identification

of supplementary small effects loci. Moreover, con-

fidence intervals of the QTL for GY and GPC were

reduced. For example, confidence intervals of QTL for

GY on 7D belonging to meta-QTL ‘‘MQTL7D’’

ranged from 25 to 62 cM in Bogard et al. (2011) but

ranged from 10 to 19 cM in the present study.

Regarding QTL detection for such integrative traits

as GY or GPC, these properties are of interest as these

traits largely depend on multiple loci with small effect

that are generally not detected in single cross studies.

Moreover, precise estimation of QTL allelic effects

and QTL confidence intervals for these traits provides

better estimates of their value in breeding and allows

precise targeting of the most promising QTL for MAS.

Conclusion

Combined QTL analysis for GY and GPC was carried

out on three inter-related wheat mapping populations

grown in a large multi-environment trial network

using the MCQTL software. Analysis of QTL co-

location allowed the identification of genomic regions

contributing to the GPC–GY relationship on chromo-

somes 2A, 2D, 3B, 7B and 7D. The regions on 2D and

7D are close to the Ppd-D1 and Vrn-D3 genes

involved in the control of flowering time. Based on

map comparisons with other studies, the region on 2A

appeared close to a glutamine synthetase gene

involved in N assimilation. These different regions

do not contribute equally to the GPC–GY relationship.

In particular, the region on 2A affected both GY and

GPC only in a few environments, while in most of the

cases this region had a strong impact on GPC only.

Meta-analysis also allowed the identification of other

genomic regions on chromosomes 3A and 5D deter-

mining GPC independently of GY across different

environments, possibly useful for improving GPC

without reducing GY.
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Gupta P (2003) QTL analysis for grain protein content

using SSR markers and validation studies using NILs in

bread wheat. Theor Appl Genet 106:659–667

Pushpendra KG, Harindra SB, Pawan LK, Neeraj K, Ajay K,

Reyazul RM, Amita M, Jitendra K (2007) QTL analysis for

some quantitative traits in bread wheat. J Zhejiang Univ Sci

B 8:807–814

Rebaı̈ A, Goffinet B (1993) Power of tests for QTL detection

using replicated progenies derived from a diallel cross.

Theor Appl Genet 86:1014–1022

Rebaı̈ A, Blanchard P, Perret D, Vincourt P (1997) Mapping

quantitative trait loci controlling silking date in a diallel cross

among four lines of maize. Theor Appl Genet 95:451–459

Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V,

Ebmeyer E, Bothe R, Pietsch C, Wurschum T (2010)

Association mapping for quality traits in soft winter wheat.

Theor Appl Genet 122:961–970

Sanford DA, MacKown CT (1986) Variation in nitrogen use

efficiency among soft red winter wheat genotypes. Theor

Appl Genet 72:158–163

Sherman JD, Lanning SP, Clark D, Talbert LE (2008) Regis-

tration of near-isogenic hard-textured wheat lines differing

for presence of a high grain protein gene. J Plant Regist

2:162–164

Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

Slafer GA, Andrade FH, Feingold SE (1990) Genetic

improvement of bread wheat (Triticum aestivum L.) in

Argentina: relationships between nitrogen and dry matter.

Euphytica 50:63–71

Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G,

Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004)

Microsattelite-based deletion bin system for the establish-

ment of genetic-physical map relationships in wheat

(Triticum aestivum L.). Funct Integr Genomics 4:12–25

Sun X, Marza F, Ma H, Carver BF, Bai G (2010) Mapping

quantitative trait loci for quality factors in an inter-class

cross of US and Chinese wheat. Theor Appl Genet

120:1041–1051

Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel A

(2006) Unravelling environmental and genetic relation-

ships between grain yield and nitrogen concentration for

wheat. Eur J Agron 25:108–118

Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein

content gene Gpc-B1 accelerates senescence and has

pleiotropic effects on protein content in wheat. J Exp Bot

57:2785–2794

Varshney RK, Dubey A (2009) Novel genomic tools and

modern genetic and breeding approaches for crop

improvement. J Plant Biochem Biotechnol 18:127–138

Verhoeven KJF, Jannink J, McIntyre LM (2005) Using mating

designs to uncover QTL and the genetic architecture of

complex traits. Heredity 96:139–149

Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL:

a package of new computational methods for the meta-

analysis of QTL mapping experiments. BMC Bioinfo 8:49

Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009)

QTL mapping for grain filling rate and yield-related traits

in RILs of the Chinese winter wheat population Heshang-

mai 9 Yu8679. Theor Appl Genet 118:313–325

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez

A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat

and barley vernalization gene VRN3 is an orthologue of

FT. Proc Natl Acad Sci USA 51:19581–19586

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for

the growth stages of cereals. Weed Res 14:415–421

Zhao L, Zhang KP, Liu B, Deng Z, Qu HL, Tian JC (2010) A

comparison of grain protein content QTLs and flour protein

content QTLs across environments in cultivated wheat.

Euphytica 174:325–335

Mol Breeding (2013) 31:587–599 599

123


	Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations
	Abstract
	Introduction
	Materials and methods
	Plant material and field experiments
	Phenotyping
	Genotyping
	Genetic mapping
	QTL mapping using the MCQTL software
	Analysis of QTL colocation
	Statistical analysis

	Results
	Phenotypic variation
	Genetic map
	QTL detection for GY and GPC
	Meta-analysis of QTL co-locations

	Discussion
	Genomic regions contributing to the GPC--GY relationship: candidate genes and ecophysiological properties
	Genomic regions determining GPC independently of GY possibly useful in MAS
	Benefits of using connected populations in QTL detection for GY and GPC in wheat

	Conclusion
	Acknowledgments
	References


